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Abstrad-A higher-order shell theory. which includes the effects of transverse shear and transverse
normal strains. is developed for describing the behavior of composite shells. The equations. appli­
cable to laminated composite shells of arbitrary shape with arbitrary temperature and moisture
distributions. are established in tensor notation without reference to any particular coordinate
system. These equations are then written in terms of components with respect to an orthogonal
curvilinear coordinate system.

INTRODUCTION

The thermal properties. as well as their high specific stiffness and strength. have made fiber­
reinforced composites ideal for many aerospace applications where deformations induced
by temperature or moisture must be minimized. One such application is the support
structure of space telescope mirrors in which many of the structural elements, including the
mirrors themselves. are shclls-essentially two-dimensional, thin. curved clements.

To utilize fully composite materials in such structures, a method to predict the defor­
mntion of these elements due to chnnges in temperature and moisture concentration must
be avnilnblc. The significnnce of the problem h.1S led to many studies of the hygrothermal
behavior of laminated composite shells. Most of the previous investigators were concerned
with circular cylinders and spheres, and analyzed the problem via elasticity theory, by
considering only one or two dimensions (e.g. see summaries by Takeuti and Naotake (1978)
and by Hyer et al. (1986». Three-dimensional analyses have been applied to fiber-reinforced
laminated composite circular cylinders via shell theory by Stavsky and Smolash (1970),
Pao (1972), Whitney (1971), Whitney and Sun (1974), Padovan and Lestingi (1980), and
Hsu et al. (1981). (n all but one of these analyses, either the effects of transverse normal
(cd or transverse shear strains (c lJ and e2J) were neglected, the apparent exception being
Whitney and Sun's (1974) study of hygrothermal deformations of circular cylinders. (Sub­
scripts I and 2 denote directions parallel to the midsurface and subscript 3 denotes the
direction perpendicular to the midsurface, Fig. I.)

The effects of transverse normal strain (or thickening strain) are important in laminated
composites. because, when heated. such materials tend to expand more in the direction
perpendicular to the plane of the laminate than in the directions parallel to this plane. The
importance of this "thickening" effect was discussed by Daugherty et al. (1971) in a

n

Fig. I. Description of the shell.
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technical note in which they developed governing equations for the free thermal expansion
of homogeneous. orthotropic shells. and by Whitney ( 1971) and Whitney and Sun (1974)
in their papers on composite circular cylinders. The importance of including transverse
shear strains in the analysis of hygrothermal deformations was pointed out by Whitney and
Sun (1974). Padovan and Lestingi (1980). and Hsu et at. (1981).

Thus. it is well recognized that. to achieve good accuracy. both the transverse normal
strain and transverse shear strains must be included in the calculation of hygrothermal
stresses and strains of composite shells. Indeed. these strains have already been included in
elasticity and shell theory solutions ofcomposite cylinders. However. corresponding analy­
ses. taking into account both the normal and transverse strains. have not yet been developed
for composite shells of general shape. Therefore. the first objective of this investigation was
to derive the governing equations. which include the effects of transverse normal and
transverse shear strains for laminated composite shells of arbitrary shape subjected to
arbitrary moisture and temperature changes. These results are presented in this paper.
The second objective was to study hygrothermal deformations of axisymmetric laminated
composite shells with and without a sandwich core. These results are described in Doxsee
and Springer (1989a.b).

f'ROIlLEM STATEMENT

The deformation of a shell subjected to changes in temperature and moisture con­
centration is desired. The shell has a uniform thickness which is much sm.tller th.lO the
sheWs radii ofcurvature (Fig. I). The shell may be composed of a single material or several
dillcrent materials bonded together in ktyers. each layer having a constant thickness. Each
layer m.ty be isotropic or orthotropic. The material properties arc assumed to be linearly
clastic and inc.h.:pendent of stress. temperature. and moisture concentration. A consistent
combination of displacements. forces. 'lOli moments arc specified along the edges of the
shell.

Initially. each point of the shell is at some arbitrary. but known. tempemture. and the
materi.tl at each point has absorbed a cert.tin known amount of moisture. The shell is
introduced to a new environment which causes known changes in the temperature and in
the moisture concentration. The changes in turn induce internal stresses in and deformation
of the shell. The displuccment of each point of the shell is taken to be small compared to
the thickness.

The following problem is addressed: given the initial geometry of the shell. its material
properties, the prescribed edge forces and displacements, and the temperature and moisture
concentration changes at every point of the shell. the displacements and stresses at every
point of the shell arc required. For this problem. mathematical models of the system have
been obtuined which arc vulid for generully shuped shells having arbitrury temperature und
moisture distributions.

GOVERNING EQUATIONS

In this section a higher-order theory of the hygrothermal behavior of composite shells
is developed. This shell theory includes both transverse normal and transverse shear strains
and accounts for the coupling between the transverse normal and the in-plane strains. The
governing equations are developed in tensor notation without reference to .lIlY particul..tr
coordinate system. It is noted that some of the derivations are very long and. hence. could
not be included here. Readers interested in further details of the analysis are referred to the
thesis by Doxsee (1988). The governing equations written in terms of components with
respect to an orthogonul curvilinear coordinate system are given below.

As was done in many previous plate and shell theories. the variation of displacements
(U 1. U 2. U~) through the thickness of the shell is approximated as a polynomial in the
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Initial position Displaced position

Fig. 2. Displacement appro:'timation.

normal coordinate: (Fig. 2)

VI = "1+: dJ 1+:22Pl+: J JfJl+ .

V 2= "2+: lfJ~+:2 ~p~+:J JP~+ .

V J = W+: 1,/+:2 ~tl+:J .1tl+ ... ( I )

where VI and V 2 are the displacements ofa point qt in directions parallel to the midsurface.
and V 1 the displacement of the point in the direction perpendicular to the midsurface.t The
corresponding displitcements of point p on the midsurf.tee closest to q are denoted UI. "2.
and w. The parameters IP I and .11 2 arc midsurface "rotations". These and the other p's
indicate the v'lriations of in-plane displacements through the thickness of the shell. The tl's
determine the "stretching of the normals" and the transverse normal strain r. H. since

(2)

In order to account for transverse normal strain. the shell theory's displacement approxi­
mation must include ,"s.

GEOMETRY AND DEFINITION

A shell of constant thickness t is considered (Fig. 3). and the points of the shell and
its boundary are denoted by ~ and O~. respectively. The boundary of the shell is the union
of the upper surface. the lower surface. and the edge faces:7. The set of points lying halfway
between the upper and lower surfaces is called the midsurface and is denoted Y. The
outward unit vector normal to i):18 is denoted v and thc intcrsection of Y and :F is dcnoted
off.

Let q be any point in the shell. The point of the midsurface closest to q is denoted p
and is related to q via

q = p+:n(p) (3)

where: is the distance between points p and q. and n(p) is the unit vector normal to the
midsurface at p (Fig. 4).

Any vector v defined at a point q may be decomposed into two vectors. one vector
parallel to the midsurface at p. called the intrinsic part. and one vector normal to the

i
midsurface at p. called the extrinsic part (Fig. 4). The intrinsic part will be denoted v and

t Boldface indicates that the quantity is either a point in space or a vector.
: Pre-subscripts arc employed to dilTerentiate dilTerent but similar quantities. Post-subscripts indicate the

components of vectors and tensors.
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Fig. 4. Intrinsic ~ and e~trinsic;'nparts or a vector v.
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the extrinsic part will be denoted L'n so that v is a vector and L' a scalar. Then the decompo-
sition is written

, <
v = v+L'n. (4)

Second-rank tensors are decomposed as follows. Suppose a second-rank tensor T is
the sum of dyads

T=u®v+t®w (5)

where u. v. t, and ware vectors and where ® is the tensor product operator (Gurtin. 1981).
Then T is decomposed as

I ~ i c: i ~ j c:
T = (u+lln) ® (v+L'n) + (t+/n) ® (w+ wn)

where

ii Ie ci «

= T+T® n+n ®T+T(n® n)

II I I i I c:c: C c c «:
T =u ® v+t ® w, T = ill' +/Il'

Ie c i c i Cl etC I

T = t'u+wt. T = IIV+/W.

(6)

The number ofsuperscripts above T is equal to the rank ofT. and each superscript e reduces
Ii Ie CI «

the rank by one. Hence. T is a second-mnk tensor. T and T arc vectors. and T is a scalar.
Since any second-rank tensor may be written as a sum ofdyads. the above results generalize
for all second-rank tensors. Analogous results hold for tensors of higher rank.

Two different double-dot products (: and··) will be used in deriving the governing
equations. They are defined as follows. Let C = t (8) u ® v ® w be a fourth-rank tensor and
let T = a ® b be a second-rank tensor. Then the two double-dot products of C with Tare

C ; T = (t ® u ® v ® w) ; (a ® b) = (w' a)(t· b)u ® v

C' .T = (t ® u ® v ® w) .. (a ® b) = (w' a)(v' b)t ® u. (7)
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The double-dot product ( :) forms dot products between the pair of "inside" vectors (w' a)
and the pair of "outside" vectors (t. b). while the double-dot product (..) forms dot
products between the two pairs ofinside vectors. These definitions of the double-dot product
generalize to tensors of other ranks.

KINEMATICS

Let q be a point in the shell and let p be its projection onto the midsurface as in eqn
(3). The displacement of q, denoted by U(q). is approximated by

,v

U(q) = v(p) + L :'" ",is(p)
",-I

(8)

where v(p) is the displacement of p; the second term of the sum (= ItS) is the linear variation
of displacement through the thickness; (=22iS) is the quadratic variation of displacement
through the thickness, and so on. The number N represents the "order" of the displacement
approximation. The greater N is. the better eqn (8) approximates the actual deformation
of the shell. Figure 5 shows a cross-sectional view of a shell in its initial and displaced
positions. The point q and its projection p are displaced to the points q' and p'. respectively.

As described above. the vectors v and ",f; can be divided into vectors parallel and
normal to the midsurface as

v = U+II'O. ,,,is = ",/1+",'10, m = 1,2.. .. ,N (9)
I I

where U = v and ",/I = ,,,is are the vector components of v and ",f; parallel to the midsurface
• •

(the intrinsic parts), and IV = v and ",'I = ",e> are the magnitudes of the vector components
normal to the surf'lce (the extrinsic parts). The quantities u, 11'. ",fl, and ",'I are the dis­
placement measures of the shell theory. Taken together, eqns (8) and (9) are the vector
representation of eqns (I).

Some of the /I's and '1'S may be assumed to be zero. For future reference. Np is defined
to be the highest order of non-zero fl's (i.e. ",fl = 0 for all m> Np) and N, is the highest
order of non-zero '1's (i.e. ",'I = 0 for all m > N,). N is then taken to be the greater of Np

and N".
The three-dimensional linear struin at a point q is given by (Gurtin, 1984)

( 10)

where the superscript T denotes the transpose, and ~ the gradient operator on three­
dimensional space. This grudient operator is related to the gradient operator on the mid­
surface V by (Steele, 1986; Doxsee, 1988)

displaccd posilion

midsurfiICc

(11 )

Fig. S. Displacements of points p and q from the initial position to points p' and q'.
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In this equation. p I (=) is the inverse of the tensor p(=). which is defined by

p(=)=l-=b ( 12)

where I is the identity tensor on the midsurface and b = - Vn the curvature tensor of the
midsurface. For plates. b = O.

By combining eqns (8)-( 12). the strain at any point q can be expressed in tenns of
strain measures defined on the midsurface. The resulting expression is

seq) = ~[p-I.('1+ I. ="'mK)+(l+ I. ="'mI(T).p.l]
- m=1 ,"""I

+ ~ [p- I • (w + I. ='" mx) ® n + n ® (w + I. ='" mx) .p- I]
.. m= I m= I

( 13)

where 'I. mK. W, mX. p. and mA. are the strain measures. These strain measures arc defined in
terms of the displacement measures as

'I == Vu - Il'h. ml( = VmIl - m"h

w == dl+u'h+VII', ",X = (111+ 1)1",.IIP+(1-11I)",II·h+V","

with

",i. = (111+ 1)1",,11"

I.V, liP = O. (N. I I" == 0

( 14)

I

where V is defined to be the operator which gives the intrinsic part of the gradient on the
midsurface. The strain measures 'I and ",I( arc tensors of the second rank. wand ",1. arc
vectors. and p and ",A. are scalars. In elln (13), the terms on the right-hand side arc the
intrinsic ("in-plane") part of the strain tensor (first line). the transverse shear strain (second
line). and the transverse normal strain (last line).

EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

The equilibrium equations and boundary conditions are derived via the principle of
virtual work (Fung. 1965). Let j4 be a shell with tractions v • ti prescribed along part of its
boundary iJJd" c :F and displacements prescribed along the other part 2:JdL c:F. (The
symbol c represents a subset.) The upper and lower surfaces are taken to be traction free.
Let O(q) be a virtual displacement of each point qe:16' such that 0 is zero on iJJdu and is
arbitrary elsewhere. The principle of virtual work states that (Fung, 1965)

0= i~.v.ti'Oda+I [-(1: (\"o)r+f'01 dl' ( 15)

where (1 is the stress tensor. and f the body force vector.
Virtual displacement measures. ii, I;'. :·P. and m" are defined to be related to the virtual

displacement 0 via the analog of eqns (8) and (9) (i.e. eqns (8) and (9) hold with bars over
the displacement and the displacement measures). Similarly. virtual strain measures j. w,
mK. mX. and mi. are defined in terms of the virtual displacement measures via eqns (14) with
the actual strain measures and actual displacement measures in eqns (14) replaced by the
virtual strain measures and virtual displacement measures. respectively. By combining these
results with eqns (10) and (13). integrating eqn (15) through the thickness. and performing
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other algebraic manipulations. one obtains

1 [ 'V ]

0= " v· N'ii+QI~'+ L (",1\1'",'+".5",,,) ds
(~. m-I

+1 {-[N:yr+Q'w+PP+ t (",M:",,,T+,,.5·,,,X+,,,T,,,;.)]
.' ",-1

345

(16)

The new terms appearing in this equation are defined below. The first integral is a line
integral along the intersection of i'Y" and cJ4", which is denoted c.'/'11' and the second integral

is a surface integral over .(j'. Also appearing in eqn (16) are the stress resultants

I
I/~

p =In Il;;d:. I
I"

'"T = ., Il;;:,n d:
- /i l'

(17)

for m = 1,2, ... , N. where: is the normal coordinate. and II the determinant of II which
W<lS delined by eqn (12). N is called the membrane stress resultant. Q the flrst tmnsverse
shear stress resultant. 1M the first stress resultant moment••lIld P the first transverse normal
stress result<lnt. ",M, ",S, .tIld mT arc called higher-order stress resultant moments, tntllsversc
she'lr stress resultants. and tr.lIlsverse normal stress resultants, respectively. Nand ",M arc
tensors or the second mnk, Q amI fIlS ,Ire vectors, and P and m T arc scalars. The body force
resultants are defined as

f'12 c

q= III d:.
- 1/.2

I
'I~ i

fIlm = lif :,n d:
.- f/2

"rl' = f"2 pj':''' d:.
-. 112

(18)

. . - -Finally. the prescribed traction resultants V· N. V· Q. V· n,M, V· fIlS are defined in terms of
the prescribed tractions via eqn (17) pre-dotted on both sides with v and with hats placed
over the stress resultants and stresses.

By making use or kinematical rehttions for virtual displacement measures and virtual
strain measures (the analog ofeqns (14», the virtual strain measures in eqn (16) are replaced
by expressions containing the virtual displacement measures and the gradients of the
virtu.1I displacement measures. Then by applying the divergence theorem to the resulting
expression. and by noting that the virtu'll displacement measures arc arbitrary everywhere
except where disphlcements arc prescribed. equilibrium equations and boundary conditions
are obtained. The equilibrium equations nrc

I

0= V'N-b'Q+1

0= N:b+V'Q+q
,

o= V'",M - {I -",)b' ",S -", (", _ liS+",m, liS = Q

O=",M :b+V'",S-m (m_IIT+",.f. oT = P (19)
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1

for m =: 1.2..... N. where (V·) is an operator which is defined to give the intrinsic part of
the divergence on //'. There is a one-to-one correspondence between each of the above
equations and the displacement measures adopted in the initial kinematic assumption. eqn
(8). Equation (19)1 corresponds to u; i.e. ifu is taken as a displacement measure. then eqn
(19) I must be satisfied. Similarly. eqn (l9)~ corresponds to w. eqn (\ 9), corresponds to ",/J.
for m =: 1.2..... Np• ,!nd eqn (19)~ corresponds to m'l. for m =: 1.2..... Nq •

As boundary conditions one must prescribe at each point of N/

either Y'N or u

and either Y'Q or It'

and either Y'",M or ",/J

and either Y'mS or m'l

for m = 1.2•.... N.

(20)

CONSTITUTIVE EQUATIONS

For the types of linearly elastic materials considered here. the stress-strain relation is
(Carlson, 1984; Tsai .md Hahn, 1980)

(21 )

where C is the elasticity tensor, ItO the change in specific moisture concentmtion from some
reference value, '0 the change in tempenlture from some reference temperature. !tcJ) the

I stress-moisture tensor, and tcJ) the stress-temperature tensor. These quantities are explained
in greater detail below.

The materials under consideration are orthotropic and do not exhibit coupting between
ij CI ~

intrinsic stresses tT .md tmnsverse shear stnlin e, nor between transverse shear stress tT and

transverse normal stmin ~, etc. Thus many of the components of the elasticity tensor such
file ieee

as C and C arc equal to zero.
The change in specific moisture concentmtion is the difference between the current

specific moisture concentration c and a reference specific moisture concentration Cj,

(22)

The specific moisture concentration at a point q is defined by (Tsai and Hahn, 1980)

(23)

where AV is the volume of a set of points surrounding q. The stress-moisture tcnsor !tcJ) is
symmetric and is related to the moisture-swelling tensor ha; via

(24)

Similarly, the stress-temperature tensor tcJ) is symmetric and is related to the thermal­
expansion tensor 'rz via

'e!) = - c .. 'rz. (25)

Since problems for which the changes in temperature and moisture concentration are small
are being considered. the materia1 properties C, ha;, and fa: are taken to be independent of
temperature, moisture concentration, and stress.
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The distributions of moisture concentration change and temperature change through
the thickness are approximated by

:v.

hO(q) ~ L ='" ~O(p)
,"=0

,'V"

'O(q) ~ L ="':"O(p)
"'aO

(26)

where:'O and:"O are the specific moisture concentration measures and temperature measures
of the shell theory, respectively. These measures are chosen to make eqns (26) approximate
the actual distribution of temperature and moisture concentration as closely as possible. N8

is the order number of the hygrothennal distribution approximation. [n general. the greater
No is, the better eqns (26) approximate the actual temperature distribution.

By taking account of the symmetries of (1, &, and C. and the fact that the material
under consideration is orthotropic. the stress-strain relation, eqn (21), may be written as

Ie iele Ie

(1=2C"&

(27)

where the i's and e's above the terms indicate intrinsic and extrinsic parts. respectively. By
taking the intrinsic and extrinsic parts of eqn (13). substituting them into the appropriate
places in eqns (27) and then substituting these equations into eqns (17), the constitutive
equations of the shell theory are obtained

N

N = 08"'1+00,,+ L (,8",K+/0/)+hN+'N
J- I

N

tnM = ",8"'1+",0,,+ L ({j+",.B··{j+"'IK+{j+tn,D{j+""A)+:,M+:"M
j- I

N

Q = oG' W + L JG ' /1.
j- I

N

inS = ",G'w+ L (j+nt)G'{j+""J(
ja I

N

P = oOT .. y+oFp+ L COT. 'JK+JFJA) +hp+'p
j- I

N

tnT = ",Dr .. 'I +",Fp + L (U+""OT .. (j+m,K+ (j+tn,F(j+ntl)') +~ T +:n T (28)
j- I

for m = 1.2, ...• N. The terms mB. ",D. ",G. and mF (m = 1.2.... , N) are the shell elasticities
defined as

f
'I2 ecce

",F = Jl C ='" d=.
-t/~

(29)

Each ",B is a fourth-rank tensor. each ",0 and ",G a second-rank tensor. and each ",F a
scalar. Also appearing in eqns (28) are the stress-moisture resultants
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~'I = f,ll "OJlIl- 1'"<D ='" d=

~ T =f,11 "OJl"¢' ='" d= (30)

for m = 1.2..... N. Similarly. the stress-temperature resultants 'N. :"M. 'P. and ~Tare
defined via eqns (30) with superscript h replaced by superscript t.

For theories in which Np and N~ are low numbers. it is necessary to modify some of
the above definitions for the elasticity. stress-moisture, and stress-temperature tensors. For
example. there are two sets of modifications required for a first-order transverse shear
deformation theory (i.e. Np = I and N~ = 0). First. since N~ = 0 the definitions of mS, 'N.
"N. ~M. and :"M must be modified. Second, since Np = I, the definition of oG must be
modified.

(I) Taking N'l = 0 actually follows from the assumption that. since plates and shells
ec

are thin. the transverse normal stress is often negligible (i.e. (f = 0). rn this case. the

transverse normal strain;' is calculated from eqn (27).1' and thus ",'1. p. and mI. are not
independent kinematic variables of the theory. Then the definition of ",S. 'N. "N. ~I\I. and

« ec
:,,1\1 must be modified as follows. By solving eqn (27)1 (with (1 = 0) for f. and substituting
the result into eqn (27)1 olle obtains

(1)

where

c c
(32)

'E. "eI,. leI, an: called the reduced intrinsic elasticity, stress~moisture,and stress-temperature
tensors, respectively. Then ",8. t:"i. "N, :,M, and :"M are defined by eqns (29)( and (30) with

C, "<D. and '<D replaced by 'E, "d>. and td>, respectively.
Ie Ie'

(2) For static equilibrium, the transverse shear stress t1 and strain I: distributions
through the thickness are roughly parabolic for symmetric laminates (Pagano and Hatfield.
1972). It follows from eqns (13) and (14) that the kinematics of the shell (and plate) theory
reflt:ct this fact only if Nfl ~ 3. Thus for "low order transverse shear deformation theories"
(i.e. theories which do not include the Kirchoff-Love assumption and for which Nil < 3)
the ddinition of the shell elasticity tensor mG (eqn (29)~) must be modified. Historically,
this modification has been accomplished in one of two different ways.

(.1) The right-hand side of eqn (29)~ is multiplied by shear correction factors which
.In: chosen to make eqn (28h .IS accurate as possible for a specific problem. This technique
was introduced by Mindlin (1951) for plates, and is closely related to Timoshenko's beam
theory (Timoshenko, 1922). Many previous investigators have used this or a related tt.-eh­
mque.

(b) In addition to the kinematic assumptions (eqns (8) and (9»-or instead of these
assumptions-one makes assumptions concerning the distribution of stresses and strains
through the thickness of the shell. Then a variational principle is employed to derive the
constitutive equations. This is the technique employed by Reissner (1945. 1947. 1972. (979)
and Naghdi (1957.1963,1984).

For a first-order shear deformation theory, method (b) outlined above is chosen and
. ic ~

Naghdl's (1963) procedure adopted. Naghdi assumed that f. and (J vary quadratically
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through the thickness. arid then employed the Hu-Washizu (Gurtin. 1984) variational
principle to obtain

(33)

For a homogeneous material. this definition is equivalent to employing a shear correction
coefficient of 5/6.

The derivation of the governing equations of the shell theories under investigation is
now complete. The governing equations form a set of linear. partial differential equations:

(i) displacement measure-strain measure (kinematic) relations (eqns (14».
(ii) equilibrium equations (eqns (19».
(iii) stress-resultant-strain measure (constitutive) relations (eqns (28». and
(iv) subject to the boundary conditions (eqns (20».

Once the solution to this set of equations has been obtained. one determines at any point
in the shell the displacement from eqn (8). the stmin from eqn (13). and the stress from
eqn (27). The accuracy of these equations depends on the number of terms included in
the initial displacement approximation (eqn (8». and in the temperature and moisture
distribution approximations (eqn (26». The accumcy also depends on the approximations
made when evaluating the constitutive coetlicients (eqn (29». as discussed in the following
section.

GOVERNING EQUATIONS IN LINES OF CURVATURE COORDINATES

In order to obtain numerical solutions to the governing equations derived in the
previous chapter. it is necessary to express these equations in component form. For con·
venience. a line of curvature coordinate system (.\: I. x~.:) is adopted associated with the
midsurface (Fig. 6) (Kmus. 1967). Curves of constant XI coincide with curves of principal
curvature 1/R 2 of the midsurface. and curves ofconstant X ~ coincide with curves of principal
curvature IIR I' The square of the length of a dilTerentialline segment on the rnidsurface of
the shell is given by

(34)

where A I and A 2 are scalars which are functions of position (x I. X2) on the midsurface. The
four quantities A I. A 2. R" and R 2 define the shape of the shell and are not independent
(Kraus. 1967).

At each point (XI.X2) of the midsurl~lce of the shell a set of basis unit vectors (t l• t 2.0)

is defined such that t I is in the direction of increasing x I. t 2 is in the direction of increasing
x 2. and 0 = t I X t 2 is normal to the midsurl~lce.As above. : is the coordinate in the direction
01'0.

The governing equations are listed in Tables 1-10 in terms of physical components in

"l=b l
f,=h.,

~~-....:-.......,·~·'!=hJ

~"--~~~'Cz.zb~

Fig. 6. Linl.'S of curvature coordinates.
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Tahlc I. Displaccmcnt in tcrms of dis­
placcmcnt measures expressed in ph~"caJ

comp"nents in Imes of curvature c",'rumales

\'.i

C,(x,.x .. :) = tI,( " ..\.)- '\ ;'·~II,(.\,.\·:I
- - ...-:'1

Subscript x takes on values I anu 2.

Tablt: 2. Strain in terms of stram measures expressed in physical components in lines
of cun'atun: «lI'rulnates

"" = "." = ~ ('I--~R-'-)("" + t ;''' ~x,)- + ... , 1 "',.",

)

[11 =1'+ 2: =""ttri.
... "".1

.v is the grealer ,,1' iV". N•. Sut>scripts x and Ii take ,'n values I anu :! t>ut there is
01' summali,'n over repealed sut>scripls.

T;lhle J. Stralll measures in terms of uispl;ll:ement measures
expressed in physical elllllpOllellls in lines of curvature coor·

dinates

I ~ I
I [ .-I,., J1I 1.!- -'II.,:
A~ A,

II. W
,{I, - -R-. + "

. A,

I' = ,II

( I ) fI I ) ~ fI, ~'1.,
... x'l' = ,,,+ 'm .. 11 J-( -,,, 'R'--" + '~f-

, '.
~;. = (m + I) I~' 11'/

The comma notation ( ). denotes difTerentiation with
respt.'l:t to the coordinate X,. Suhscript x takes on values I and
:! but there is no summation over repeated subscripts.
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Table 4. Stress resultants in terms ofstresses e~pressed in
physical components in lines of curvature coordinates

.voJ! = r,~ ~(I +: R,)(1 ," d:

Q, = r,~~ (\ +:,'R,)(1"d:

p = r:~ (I +:,R,)(I +: R~)ll'lId:

f':~.\f,~ = .,: (I +:'R,I:,"(1,,,d:

f':~S,= _,:(I+:R,):~(1.,d:

f"~T=,: (I +:/ R,H I +:.' R,):~ll'lId:

R, = R, and R, = R,. SulN:ripts x and II take l>n

valucs I and:! hut thcre is 11(' summation ovcr repeatcd
suhscripts.

Tahle 5. Body f'.rce resultants in terms of hody forces
e:\prcsscd in physical componcnts in lincs of curvalurc

coordinatcs

/,"' f" (I +:/R,)(I +:/R:lJ~d:
t'!

,,= f,:: (l +:/R,)(I +:/R:l!,d:

.,11I, '" r:: (I +:/R,)(I +:/R,)!,:'"d:

f':••V = .,: (I +:/R.>(1 +:/R,l!,:'"d:

Subscript x takcs on "..Iucs I and :!.

T..blc 6. Eljuilibrium cljualions c:\presscd in physical componcnts in lincs of curvature coordinatcs

I " Q,0=··· [(A,N •.).+(A.N,.),+A.,N.,,-A, •.\,,!+ +/.A,A, .... '" _.' .. R,'

The comma notation ( I., denotes differentiation with rcspo.'\:t to the coordinate .".,.

351



352 Table 7. Boundary conditions expressed in
physical components In lines of curvature

coordinates

Must prescribe at each point of the bound­
ary:

either ,'iVY or u,
and either iii" or u.
and either Q. or ...
and either ",.\1.. or ",P.
and either ",Jf" or ",Pi
and either ",5, or ",Tf

for m = 1.2..... N. Subscript v denotes the
component in the direction normal to the
boundary of the shell. and subscript ).
denotes the component in the direction
tangent to the boundary of the shell.

Table 8. Constitutive equations expressed in physical components in lines ofcurvature
coordinates

,.
N.~ = "B.~;.,'}',>r+ "D.dl'+ L CB.d;·., ,/\,>-,.+ ,D.~ ,).) +·N,~+'N.~

,~ ,
v

Q. = IIG,/,III,,+ L ,G./,,'x./,
j .... l

v

f' = liD ."i' ." + "FI' + L CO ./, ,/\.p + ,f)-> +'1' +'I',- ,
v

'",\( .." ~ "JI'JI)'.,i'.~,. +""f)./ll' + L C,.. ""lIllly.ll"" t-0""'\7+ I'" "/lD.1f 1m t-").) +~Jf r,,+:"~f'Jf,- ,
.V

m."';, ~... ,.,(I·.~IJJI + [ 1m .. /1(;./,(." .11"1.."
1- I ..

... T :..: ... l>."}'.,, +",Ji J + L (,'" t /I/>./J(m t-1'''':'/'+ 1m ./If',," .. ,,'\') +~ '1'+:" T
1-'

SUlllmation fwm I III :2 is implied by n:pcilted Greek subscripts.

Tilble I). Elilsticities expressed in physicill components ill lines
of curvilture coordiniltes

",F = ",C 1\" + (~,- + ~~}"' >- "C ll " + R ,IR1 ,,,, .lIC" \I

where

I
R1 R,

J., = 1
R, R,

if :x = J = I

if :x = J =:2

K,. =

O. otherwise

~-,U; -~) if :x = J = 1

R~,(~; - R~). if :x = J = 2

o. otherwise.

The definition of ",C"., is giwn in eqns (36). The Greek
subscripts take on values I and 2 but there is no summation over
repeated subscripts. Also R, = R1 and R1 = R,.
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Table 10. Stress-moisture resultants expressed in physical components in lines of curvature coordinates

353

R, = R~ and R~ = R,. Subscripts:l and fJ take on values I and 2 but there is no summation over repeated
subscripts. The definition of ~11l" is given in eqn (36).

lines ofcurv.. ture coordin.. tes. The derivation of the component form of the equations from
the tensor form is lengthy but straightforward. and is given in Doxsee (t 988).

The terms with suoscripts appearing in Taoks 1·-\0 ..re the physic..1components of
the vectors and tensors introduced previously. For ex..mpk. the displacemellt vector U has
the represent.. tion

(35)

Analogous results hold for tensors.
In T..bks 3 .. nd 6. comrn..s denote dilferenti.. tion with respeet to .. coordin~tte. In Table

8. summation over I and 2 is implied by the repeated Greek subscripts. In T..bles I) and 10.
lhe terms ",C.lkl. :'(1)'1' and :,,(1)'1 appear and arc dc/ined by

f
' ~

, (_ I() ..m_'" 1>'1 -. 1,,__
I, ~

(36)

where subscripts i. j. k. and I each take on the values I. 2. and 3.
The elasticities listed in Table 9 are approximations of those defined in eqns (29). The

components of the elasticity tensors ",8 and ",G can be expressed as an infinite sum (or
expansion) in powers of the small number IIR. where I is the thickness and R a representative
radius of curvature of the shcll (Naghdi. 1963). Nc is defined to be the power of (IIR) in
the last term kept in this expansion. Table 9 gives the first three terms of this expansion.
which correspond to (1IR)o. (IIR)I and (IIR)~. The definitions of the stress-moisture and
stress-temperature resultants in Table 10 contain tcrms of order (// R)O and (IIR) '. This is
acceptable as long as Nc = I or 2. However. if Nc = O. then for consistency. only the terms
of order (II R)0 should be included in the definitions of the stress-moisture and stress­
temperature resultants. The same holds true for the definitions of the applied traction
resultants (Tables 4 and 7) and the body force resultants (Table 5). Also. in the definitions
of the stress-moisture and stress-temperature resultants (Table 10) constant. linear. and
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quadratic variation of temperature and moisture changes through the thickness of the shell
have been included (i.e. Nt! = 2 in eqns (26».

The numbers NIJ. N~. NI!. and Nc determine the accuracy of the shell theory. Numerical
examples. which demonstrate the differences between shell theories based on various values
of some of these numbers. are given in Doxsee and Springer (1989a).

CONCLUDING REMARKS

The equations developed in this paper may be used to analyze the hygrothermal
behavior of laminated composite shells. A numerical procedure suitable for obtaining
solutions for shells of revolution subjected to axisymmetric changes in temperature and
moisture is presented in Doxsee and Springer (1989a). Assessments of the accuracy of the
analysis and the numerical procedure are given in Doxsee and Springer (1989a.b).
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